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Background: Neurodegenerative illnesses, including Alzheimer’s disease (AD), Parkinson’s 
disease (PD), and amyotrophic lateral sclerosis (ALS), are marked by progressive neuronal 
degeneration and presently lack adequate diagnostic and prognostic instruments.

Objectives: This review analyzed recent developments in proteomic methodologies and their uses 
in the identification and validation of biomarkers for AD, PD, and ALS. It offers a comparative 
proteome analysis of several significant neurodegenerative illnesses, highlighting both common and 
unique molecular markers. The review identified translational obstacles from biomarker discovery 
to clinical use, providing information that can improve comprehension of disease mechanisms and 
inform the creation of viable therapeutic options.

Materials & Methods: A thorough literature analysis was performed on proteomic studies concerning 
cerebrospinal fluid (CSF), blood, urine, and brain tissue in patients with AD, PD, and ALS. The 
review examined papers from January 2020 to June 2025 across prominent databases utilizing 
specified proteomic terminology. The inclusion criteria mandated that studies concentrate on human 
or validated animal proteomic analysis of disease-specific biomarkers. The literature underwent 
qualitative analysis to discern prevalent biomarkers, developing molecular networks, and trends 
among the three disorders, highlighting translational significance and methodological advancements.

Results: Comparative proteomic investigations demonstrated both shared and unique molecular 
pathways across AD, PD, and ALS, including synaptic degradation, mitochondrial dysfunction, 
and neuroinflammation. The amalgamation of proteomic data with genomic, systems biology, and 
transcriptomic, methodologies is expediting the identification of therapeutically pertinent biomarker 
panels. Innovative methods, like single-cell proteomics and artificial intelligence-based analysis are 
improving sensitivity and specificity in biomarker detection.
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Introduction 

eurodegenerative illnesses, such as Al-
zheimer’s disease (AD), Parkinson’s dis-
ease (PD), and amyotrophic lateral sclero-
sis (ALS), pose a significant public health 
challenge, especially in the elderly popula-

tions [1]. These illnesses are characterized by gradual and 
selective neuronal degeneration, resulting in cognitive 
deterioration, motor impairment, and eventually, loss of 
autonomy and life. Despite their clinical diversity, they 
exhibit common characteristics, like protein misfolding, 
synapse dysfunction, mitochondrial impairment, and per-
sistent neuroinflammation. AD is chiefly linked to memo-
ry impairment and the presence of amyloid-β and tau pa-
thology; PD is defined by the degradation of dopaminergic 
neurones and the accumulation of α-synuclein, whereas 
ALS is marked by motor neurone degeneration, with 
critical proteins, like TDP-43 and superoxide dismutase 1 
(SOD1) involved in its pathogenesis (Figure 1) [2]. 

A significant obstacle to controlling these illnesses is the 
absence of early, precise, and non-invasive diagnostic in-
struments. Contemporary diagnostic techniques frequent-
ly depend on clinical manifestations and neuroimaging, 
which identify the disease solely after significant brain 
degeneration has transpired. Identifying disease-specific 
genetic alterations during the prodromal or preclinical 
phases could markedly enhance prognosis and therapy 
results [3]. This highlights the critical necessity for reli-
able biomarkers that can differentiate between overlap-

ping clinical symptoms, forecast disease onset, monitor 
progression, and inform treatment methods [4, 5]. 

The proteomics—the extensive examination of pro-
teins and their modifications has emerged as a revolu-
tionary methodology [6]. In contrast to genomics, which 
conveys static data, proteomics encapsulates the dynam-
ic and functional conditions of cells and tissues. Utiliz-
ing sophisticated mass spectrometry (MS) and bioinfor-
matics, proteomics facilitates extensive characterization 
of protein abundance, structure, interactions, and post-
translational alterations in body fluids and tissues perti-
nent to neurodegeneration [7]. Crucially, it facilitates the 
discovery of established disease hallmarks and potential 
novel biomarker candidates that could function as early 
indicators or treatment targets. 

This review examined the changing dynamics of pro-
teomic biomarker identification in AD, PD, and ALS. 
Furthermore it used a comparative proteomics approach, 
spanning AD, PD, and ALS, in contrast to prior reviews 
that mainly concentrate on proteome results within specif-
ic neurodegenerative illnesses. By synthesizing molecular 
signatures from different illnesses, we sought to clarify 
common and disease-specific protein modifications that 
can enhance early diagnosis and facilitate personalized 
treatment. This work offers essential insights into the 
translational obstacles that hinder the advancement of 
proteomic findings from research to clinical application, 
thereby presenting a fresh integrative and translational 
perspective on neurodegenerative biomarker research.

N

Highlights 

• Proteomics provides insight into the mechanisms of neurodegeneration.

• Principal biomarkers were identified in AD, PD, and ALS.

• Mass spectrometry improves the precision of biomarker identification.

• Early detection is achievable by proteome profiling.

• Biomarkers facilitate the development of targeted treatments.

Conclusion: The proteomic biomarkers offer considerable potential for early diagnosis, disease 
classification, and tailored therapy approaches in neurodegenerative disorders. Addressing existing 
translational obstacles will be essential for the effective application of precision medicine in 
neurodegeneration.

Keywords: Neurodegeneration, Proteomics, Biomarkers, Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Amyotrophic lateral sclerosis (ALS)
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Materials and Methods

Search methods

A thorough literature review was performed to find 
pertinent research on proteomic biomarkers linked to 
AD, PD and ALS. The search was conducted across var-
ious electronic databases, notably PubMed, Scopus, and 
Web of Science, encompassing papers published from 
January 2020 to September 2025. The search approach 
employed combinations of terms, including AD, ALS, 
neurodegeneration, PD, proteomics, protein biomark-
ers, and proteomic profiling, linked by Boolean opera-
tors (inclusion and exclusion criteria). Only studies pub-
lished in English that concentrated on human subjects 
or pertinent model experiments were included. Original 
research articles and extensive reviews that presented 
proteomic studies identifying diagnostic, prognostic, or 
mechanistic biomarkers were included. Studies not re-
lated to proteomics, conference abstracts, case reports, 
duplicates, and journals lacking available full texts were 
eliminated. Further references were identified through 
the manual examination of citations from chosen stud-
ies. The ultimate selection was determined by the scien-
tific significance and contribution of each work to the 
comprehension of new proteome biomarkers and their 
mechanistic functions in neurodegenerative illnesses.

Results 

The research demonstrated significant progress in the 
identification of proteomic biomarkers linked to AD, PD, 
and ALS. In AD, consistent modifications were noted in 
proteins associated with amyloid processing, tau phos-
phorylation, and synaptic integrity. Increased concen-

trations of p-tau181, p-tau217, amyloid-β peptides, and 
NfL have proven to be dependable markers of neuronal 
damage and disease advancement. In PD, proteome 
analysis revealed the dysregulation of α-synuclein, DJ-
1, and mitochondrial complex I proteins, underscoring 
mitochondrial dysfunction, oxidative stress, and com-
promised protein degradation as major causes. Changes 
in proteins associated with autophagy and dopamine 
metabolism were also significant, indicating the grad-
ual degeneration of dopaminergic neurons. In ALS, the 
overexpression of TDP-43, FUS, and ubiquitin-related 
proteins signifies protein aggregation and impaired RNA 
metabolism, whereas increased levels of GFAP, S100B, 
and complement components (C1q, and C3) indicate glial 
activation and neuroinflammation. A comparative ex-
amination of AD, PD, and ALS identified common pro-
teomic signatures associated with mitochondrial failure, 
oxidative stress, and inflammatory response pathways. 
The overlapping protein patterns indicate convergent 
biological pathways that facilitate neurodegeneration. 
Novel proteomic technologies, including LC-MS/MS 
and TMT-based quantification, have improved biomarker 
identification by providing increased sensitivity and re-
producibility. The cumulative data endorses proteomics 
as an effective instrument for identifying disease-specific 
molecular changes, enabling early diagnosis, and direct-
ing personalized treatment strategies in significant neuro-
degenerative illnesses.

Discussion

Proteomics technologies in neurodegeneration

The quest for dependable biomarkers for neurodegenera-
tive illnesses relies on the capacity to detect intricate protein 
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dynamics with exceptional sensitivity and specificity [8]. 
Proteomic technologies, especially MS-based platforms, 
have transformed this field by facilitating the extensive 
identification, quantification, and characterization of pro-
teins from diverse biological matrices [9]. In the context of 
AD, PD, and ALS, these methodologies are particularly ef-
fective for investigating disease-relevant biofluids, includ-
ing cerebrospinal fluid (CSF), blood plasma, and non-inva-
sive specimens, such as saliva and urine. MS is fundamental 
to neuroproteomics. Methods, including label-free quantifi-
cation (LFQ), tandem mass tag (TMT) labelling, and data-
independent acquisition (DIA), such as SWATH-MS, pro-
vide high-throughput and repeatable protein measurement 
(Figure 2) [10]. These techniques are crucial for identifying 
low-abundance proteins implicated in the initial stages of 
disease development. Moreover, innovations in liquid chro-
matography–MS (LC-MS/MS) have improved separation 
efficiency, facilitating more comprehensive proteome anal-
ysis [11, 12]. Moreover, post-translational modifications 
(PTMs), frequently changed in neurodegenerative diseases, 
can be precisely characterized by enrichment techniques 
combined with mass spectrometry, providing insights into 
dysregulated phosphorylation, ubiquitination, glycosyl-
ation, and additional modifications [13]. The alterations in 
PTMs are intricately associated with protein misfolding and 
aggregation mechanisms characteristic of AD (e.g. tau hy-
perphosphorylation), PD (e.g. α-synuclein ubiquitination), 
and ALS (e.g. TDP-43 modifications) [14]. The amalgama-
tion of proteomics with bioinformatics and machine learn-
ing (ML) algorithms has significantly enhanced the ability 
to analyze high-dimensional data, pinpoint potential bio-

markers, and delineate dysregulated protein networks. Pub-
lic repositories and ProteomeXchange, in conjunction with 
neurodegenerative-specific databases, enhance data sharing 
and meta-analysis, hence expediting translational initiatives 
[15]. These improvements are poised to transform the ap-
proach from population-centric protein profiling to person-
alized diagnostics, thereby enhancing precision medicine in 
neurodegenerative treatment.

Proteomic biomarkers in AD

AD is distinguished by two principal neuropathologi-
cal characteristics: The extracellular accumulation of 
amyloid-beta (Aβ) plaques and the intracellular ag-
gregation of hyperphosphorylated tau protein within 
neurofibrillary tangles [16]. These signature proteins 
have historically constituted the basis for biomarker de-
velopment. Aβ42 concentrations are often diminished 
in the CSF, signifying cerebral accumulation, whereas 
phosphorylated tau (p-tau) and total tau levels are in-
creased, denoting neurofibrillary disease and axonal 
degeneration [17, 18]. Although these indicators are 
well-established in research contexts, their assessment 
has historically depended on invasive lumbar puncture 
or costly positron emission tomography (PET) imaging, 
restricting widespread clinical use. Table 1 presents an 
overview of essential proteins influencing the future of 
Alzheimer’s diagnostics and personalized therapeutics, 
with each biomarker elucidating distinct facets of the 
disease pathogenesis.

Figure 2. A schematic diagram representing the proteomics technologies in neurodegeneration
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Recent advancements in proteomics have facilitated the 
identification of new protein candidates that elucidate 
more dimensions of AD pathology, encompassing syn-
aptic failure, neuroinflammation, metabolic dysregula-
tion, and vascular impairment [19]. Proteins, including 
neurogranin (a postsynaptic marker), YKL-40 (inflam-
mation), triggering receptor expressed on myeloid cells 2 
(TREM2), clusterin (CLU), and neurofilament light chain 
(NfL) are becoming significant biomarkers [20]. Recent 
advancements utilizing high-sensitivity platforms, like 
single-molecule arrays (Simoa), aptamer-based SOMAs-
can, and DIA mass spectrometry—have shown that plas-
ma concentrations of Aβ42/40 ratios, p-tau181/p-tau217, 
and NfL can accurately indicate AD pathology, achieving 
diagnostic precision comparable to that of CSF and PET 
imaging [21]. Future endeavors to amalgamate these dy-
namic proteomic profiles with clinical and imaging data 
may provide more precise staging, risk classification, and 
personalized treatment monitoring.

Proteomic biomarkers in PD

PD, the second most prevalent neurodegenerative ail-
ment, is clinically defined by motor symptoms, includ-
ing bradykinesia, tremor, and stiffness, and pathologi-
cally by the degeneration of dopaminergic neurones in 
the substantia nigra and the buildup of Lewy bodies [22]. 
These cytoplasmic inclusions are abundant in misfolded 
α-synuclein, a presynaptic protein whose aggregation 
is pivotal to the pathophysiology of PD. Consequently, 
α-synuclein and its PTMs (such as phosphorylated, ni-
trated, and oligomeric versions) have emerged as primary 
possibilities in the development of proteomic biomark-
ers [23]. Table 2 presents a detailed summary of the mo-
lecular markers influencing the future of PD diagnosis, 
monitoring, and treatment, highlighting promising bio-
markers for clinical and research purposes. In addition 
to α-synuclein, proteomic investigations have revealed 
extensive protein signatures linked to mitochondrial 
malfunction and synaptic degeneration, both essential 
to PD pathophysiology [24]. Mitochondrial proteins, in-
cluding DJ-1 (PARK7), PINK1, and elements of the oxi-
dative phosphorylation pathway, have been recognized 
as changed in CSF and blood in PD [25, 26].

Figure 3. The proteomic landscapes of neurodegenerative diseases

Narayanan M & Rajinikanth V. Proteomic Biomarkers in Major Neurodegenerative Disorders. Caspian J Neurol Sci. 2026; 12(1):1-16. 

http://cjns.gums.ac.ir/


6

January 2026, Volume 12, Issue 1, Number 44

Proteomic biomarkers in ALS

ALS is a persistently progressive neurodegenerative 
disease characterized by the destruction of upper and 
lower motor neurones, resulting in muscle weakness, 
paralysis, and ultimately, respiratory failure [27]. Pro-
teomics has become a crucial method in this pursuit, pro-
viding dynamic, systems-level insights into the disease. 
Table 3 presents a detailed summary of the biomarkers 
essential for ALS diagnosis, progression assessment, 
and therapy advancement. Given that ALS is a complex 
disease, integrating many biomarkers from various cat-

egories may yield more robust and reliable measures 
for patient management and therapy approaches [28]. 
Neurofilament light chain (NFL) has emerged as a sen-
sitive and dependable biomarker for the diagnosis and 
progression of ALS, with increased levels in both CSF 
and blood indicating axonal degradation [29]. Proteomic 
investigations have elucidated the makeup of these ag-
gregates, identifying co-aggregated proteins including 
RNA-binding proteins, chaperones, and elements of the 
ubiquitin-proteasome and autophagy systems [30]. 

Figure 4. Integrating biomarkers and ML in neurodegenerative disease diagnosis

Figure 5. Modern proteomic biomarker research across neurodegenerative diseases: AD, PD, and ALS
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Comparative proteomics across AD, PD, and ALS

The proteome profiles of AD, PD, and ALS illustrate 
their unique clinical characteristics and shared molecu-
lar abnormalities [31]. Comparative proteome inves-
tigations of several neurodegenerative illnesses offer a 
robust framework for elucidating disease-specific sig-
natures, common pathogenic mechanisms, and the pros-

pects for distinct biomarker development. Although each 
condition is conventionally characterized by distinct pro-
tein aggregates—amyloid-β and tau in AD, α-synuclein 
in PD, and TDP-43/SOD1/FUS in ALS—emerging data 
underscores shared proteomic characteristics that con-
tribute to overarching neurodegenerative mechanisms 
(Figure 3) [32]. Comparative investigations consistently 
demonstrate a fundamental array of common proteome 

Table 1. Thorough examination of proteomic biomarkers identified in AD according to recent studies

Protein Class Biomarker Biological Role/Function Clinical Relevance Potential as Biomarker Ref.

Amyloid proteins

Aβ42 and Aβ40
Form amyloid plaques; 

implicated in neurotoxic 
mechanisms

Key proteins indicative 
of AD pathogenesis, 

major targets for 
pharmacological 

interventions

Extensively utilized in 
CSF and plasma for the 

diagnosis of AD and 
the monitoring of its 

progression

[55]

Aβ oligomers
Neurotoxic variants of 

Aβ; implicated in synaptic 
impairment

Suggestive of initial 
amyloid pathology

Prospective biomarker 
for the early identification 

and therapeutic 
monitoring

[56]

Tau proteins

p-tau
Forms neurofibrillary 

tangles; affects 
microtubule stability.

Robust correlation with 
cognitive deterioration 
and neurodegeneration

Extremely sensitive 
in CSF for identifying 

early AD and evaluating 
progression

[57]

Total tau
General tau protein levels 

elevate in response to 
neuronal damage

Marker of axonal injury 
associated with cognitive 

deterioration

Biomarker for illness 
surveillance and 

prognostic assessment
[58]

Synaptic proteins

Neurogranin (Ng) Engaged in synaptic 
plasticity and signaling

Linked to synapse 
impairment in the initial 

stages of AD

Robust association with 
cognitive decline in early 

AD
[59]

Synaptotagmin-1 
(Syt1)

Engaged in 
neurotransmitter 

secretion and synaptic 
vesicle amalgamation

Early declines in AD are 
associated with synapse 

loss

Prospective biomarker 
for early diagnosis and 

assessment of treatment 
efficacy

[60]

Inflammatory 
proteins

YKL-40

Chitinase-like protein 
associated with 

glial activation and 
neuroinflammation

Increased levels in CSF 
and plasma during 

neuroinflammation in AD

Possible indicator of 
neuroinflammation and 
disease advancement

[61]

CRP
Acute-phase reactant 
implicated in systemic 

inflammation

Increased in plasma in 
AD, indicating systemic 

inflammation.

Valuable for assessing 
disease severity and 
neuroinflammation

[62]

Neurofilament 
proteins NfL

Neuronal structural 
element, indicator of 

axonal injury

Robust indicator of 
neurodegeneration, 

heightened in 
both AD and other 
neurodegenerative 

disorders

Extremely sensitive 
for monitoring 

neurodegeneration and 
disease advancement

[63]

Mitochondrial 
proteins

Mitochondrial 
complex I proteins

Crucial function in 
oxidative phosphorylation 

and energy synthesis

Mitochondrial 
malfunction identified 
in AD, associated with 
neuronal deterioration

Preliminary evidence 
of mitochondrial 

malfunction, prospective 
therapeutic target

[64]

Chaperones CLU
Engaged in protein folding 

and the elimination of 
misfolded proteins

Contributes to amyloid 
plaque development and 

neuroinflammation

Possibility for both 
early detection and as a 

therapeutic objective
[65]

Vascular proteins Endothelin-1 (ET-1)
Modulates vascular 

constriction and 
endothelial activity

Associated with 
compromised blood-

brain barrier and 
cerebrovascular 
alterations in AD

Possible sign of 
cerebrovascular 

impairment in AD
[66]

Abbreviations: AD: Alzheimer’s disease; PD: Parkinson’s disease; ALS: Amyotrophic lateral sclerosis.
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Table 2. Proteomic biomarkers reported in PD

Protein Class Biomarker Biological Role/
Function Clinical Relevance Potential as 

Biomarker Ref.

α-Synuclein & ag-
gregates

α-Synuclein 
(α-Syn)

Engaged in the control 
of synaptic vesicles, the 

release of dopamine, 
and the process of 
neurodegeneration

Principal protein 
associated with PD, 

constituting Lewy bod-
ies within neurones

Biomarker for the 
diagnosis of PD, moni-
toring disease progres-
sion, and serving as a 

treatment target

[67]

Oligomeric α-Syn

Neurotoxic variant of 
α-synuclein associated 
with synaptic impair-

ment

Manifesting in the 
initial phases of PD, it 
correlates with cogni-

tive deterioration.

Prospective biomarker 
for early identification 
and treatment assess-

ment

[68]

Mitochondrial 
proteins

Parkin
E3 ubiquitin ligase, im-
plicated in mitochon-

drial quality regulation

Mutations in the Parkin 
gene result in early-

onset PD

Parkin deficiency 
noted in familial PD, 
beneficial for genetic 
and sporadic PD re-

search.

[69]

DJ-1

Safeguards cells against 
oxidative stress and 

modulates mitochon-
drial activity

Increased in early PD, 
linked to neuroprotec-

tion and oxidative 
stress

Promising biomarker 
for the early detection 

and monitoring of 
neurodegeneration

[70]

 Neuroinflamma-
tory markers

YKL-40

Chitinase-like protein 
associated with neuro-
inflammation and glial 

activation

Increased levels in CSF 
and plasma in PD, cor-
related with neuroin-

flammation

Possible indicator of 
glial activation and 

disease advancement
[71]

CRP
Acute-phase reactant, 
associated with sys-
temic inflammation

Elevated CRP levels 
indicate systemic and 
neuroinflammation 

in PD

Utilized for the surveil-
lance of inflamma-
tion-associated PD 

advancement

[71]

Neurofilament 
proteins NfL

Structural protein, a 
sensitive marker of 

axonal injury

Increased levels in CSF 
and blood, signifying 
neuronal injury and 
neurodegeneration

Extensively utilised 
to assess disease 
advancement and 

evaluate treatment 
efficacy

[72]

Synaptic proteins

Synaptotagmin-1 
(Syt1)

Engaged in neurotrans-
mitter secretion and 

synaptic vesicle amal-
gamation

Reduction in PD indi-
cates synaptic impair-

ment and neurodegen-
eration

Possible early bio-
marker for cognitive 

and motor impairment 
in PD

[73]

VAMP2 (Synapto-
brevin-2)

An essential vesicular 
protein implicated in 
the fusion of synaptic 

vesicles

Impaired vesicular 
release and dopami-
nergic signaling in PD

Beneficial for assessing 
dopaminergic activity 
and synaptic impair-

ment

[74]

Cytoskeletal 
proteins

TUBB3 (β-III 
Tubulin)

Element of microtu-
bules, crucial to cyto-
skeletal architecture 
and neuronal activity

Modified expression 
in PD, associated with 

axonal degradation and 
neuronal loss

Biomarker for 
neuronal injury and 

structural alterations 
in PD pathogenesis

[75]

Chaperone pro-
teins HSP70

Engaged in protein 
folding, stabilization, 

and degradation

Defensive function 
against misfolded 

proteins in PD, linked 
to cellular stress

Prospective therapeu-
tic target for mitigating 

neurodegeneration 
in PD

[76]

Vascular proteins Endothelin-1 
(ET-1)

Modulates vasocon-
striction and the integ-
rity of the blood-brain 

barrier

Elevated ET-1 levels 
in PD, associated with 

cerebrovascular impair-
ment

Marker of vascular 
alterations and cere-

brovascular well-being 
in PD

[66]

Lipid metabolism Ceramides

Engaged in lipid signal-
ing, apoptosis, and 
cellular membrane 

architecture

Modified lipid me-
tabolism identified in 
PD, associated with 
neurodegeneration

Possible biomarker 
for early-stage PD, 

specifically with lipid 
dysregulation.

[77]

Proteasomal 
proteins

Ubiquitin-prote-
asome system 
components

Decomposes misfolded 
or damaged proteins, 
sustains cellular ho-

meostasis

Impairment in PD 
contributes to protein 
aggregation and the 
formation of Lewy 

bodies

Beneficial for assessing 
cellular stress and 
proteostasis failure 
associated with PD

[78]

Abbreviations: AD: Alzheimer’s disease; PD: Parkinson’s disease; ALS: Amyotrophic lateral sclerosis.�
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Table 3. Proteomic biomarkers reported in ALS

Protein Class Biomarker Biological Role/
Function Clinical Relevance Potential as Biomarker Ref. 

Neurofilament 
proteins

NfL
Structural protein; marker 

of axonal injury and 
neurodegeneration

Increased levels in CSF, 
plasma, and serum; sig-

nificantly correlated with 
the course of ALS

Commonly employed for 
diagnosing ALS, tracking 

disease progression, 
and assessing therapy 

outcomes

[79]

NfH
Component of the neuro-
filament network; indica-

tive of axonal damage

Increased levels are 
associated with disease 
severity and the loss of 

motor neurones

Utilized in both the 
diagnostic and longitu-
dinal assessment of ALS 

development.

[80]

Motor neuron 
markers

TDP-43
DNA/RNA-binding pro-

tein; participates in RNA 
processing and stability

Mislocalized in ALS, 
it forms cytoplasmic 

clumps in afflicted motor 
neurones.

Principal pathology 
characteristic of ALS; pro-
spective diagnostic and 
prognostic biomarker

[81]

FUS
RNA-binding protein im-
plicated in mRNA splicing 

and control

Mutations linked to 
familial ALS; protein 

aggregation in impacted 
neurones

Principal indicator for 
familial ALS; may assist 

in distinguishing disease 
subtypes

[82]

Mitochondrial 
proteins

SOD1 

Enzyme that facilitates 
the transformation of 

superoxide radicals into 
hydrogen peroxide

Mutations in SOD1 result 
in familial ALS, compro-
mising oxidative stress 

response and mitochon-
drial function.

Promising therapeutic 
target and diagnostic bio-

marker for familial ALS
[83]

Mfn2

Regulates mitochon-
drial fusion, essential for 
preserving mitochondrial 

integrity.

Modified in ALS, associ-
ated with mitochondrial 

impairment and neurode-
generation

Possible biomarker for 
mitochondrial dysfunc-

tion in ALS pathogenesis
[84]

Chaperone 
proteins HSP70

Engaged in protein fold-
ing, stabilization, and 

degradation.

Increased in ALS patients; 
function in safeguarding 

cells against stress-related 
injury

Marker of cellular 
distress and possible 
target for therapeutic 

intervention

[76]

Cytoskeletal 
proteins Vimentin

Intermediate filament 
responsible for preserving 
cellular morphology and 

stability

Increased in ALS; linked 
to glial activation and 
neuroinflammation.

Valuable for assessing 
glial participation and 
neuroinflammation in 

ALS

[85]

Inflammatory 
markers

YKL-40
Chitinase-like protein im-
plicated in inflammation 

and glial activation

Increased levels in 
CSF and plasma in ALS 

patients; correlated with 
disease severity.

Possible indicator of 
neuroinflammation and 
disease advancement

[86]

CRP
Acute-phase reactant, 

associated with systemic 
inflammation

Elevated CRP levels as-
sociated with systemic 
inflammation and the 

progression of ALS

Utilized for assessing 
inflammation and the 

severity of disease
[87]

Ubiquitin-
proteasome 

system
Ubiquitin Labelling protein for pro-

teasomal breakdown

Compromised proteasom-
al function in ALS, leading 

to protein aggregation

Increased ubiquitin levels 
in ALS are associated 

with proteostasis disrup-
tion and neurodegenera-

tion

[88]

Vascular 
proteins

Endothelin-1 
(ET-1)

Modulate vascular con-
striction and endothelial 

activity

Elevated ET-1 levels are 
associated with vascular 

impairment in ALS.

Prospective biomarker 
for cerebrovascular 
impairment and the 
advancement of ALS

[66]

Exosome 
proteins

Exosomal 
TDP-43

Discharged from neu-
rones and glial cells, 
implicated in protein 

aggregation

The presence of TDP-43 
in exosomes corresponds 
with the severity of ALS

Non-invasive biomarker 
for assessing disease 

progression
[89]

Lipid metabo-
lism Ceramides

Engaged in cellular signal-
ing, programmed cell 
death, and membrane 

stability

Dysregulated lipid metab-
olism in ALS, associated 
with neurodegeneration

Possible early biomarker 
for ALS, specifically 

in lipid dysregulation 
and cellular apoptosis 

pathways

[90]

Abbreviations: AD: Alzheimer’s disease; PD: Parkinson’s disease; ALS: Amyotrophic lateral sclerosis.�
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changes associated with neuronal damage, glial activa-
tion, and metabolic dysfunction. NfL, an indicator of 
axonal injury, is raised in AD, PD, and ALS, and cor-
relates with the severity and course of each condition 
[33]. Markers of neuroinflammation, including YKL-40, 
TREM2, and complement proteins (e.g. C1q, C3), are 
present in the CSF and plasma proteomes of all three 
illnesses, indicating a shared inflammatory environment 
[20]. Neuroinflammation, indicated by elevated pro-
teomic levels of microglial and astrocytic markers (e.g. 
GFAP, CHI3L1, and complement factors), is another 
unifying theme [34]. Persistent stimulation of innate im-
mune responses leads to brain injury and the progression 
of neurodegenerative diseases. Synaptic dysfunction and 
loss are prevalent in AD, PD, and ALS, as demonstrated 
by reduced levels of synaptic vesicle proteins (SNAP-
25, and synaptophysin), postsynaptic scaffolding pro-
teins (PSD-95, and neurogranin), and neurotransmitter 
regulators [35]. 

Bioinformatics and systems biology approaches

With the increasing volume and complexity of pro-
teomic data in neurodegenerative illnesses, bioinfor-
matics and systems biology have become essential for 
converting raw data into significant biological and clini-
cal insights [36]. These computational methodologies fa-
cilitate the amalgamation of multi-omics data, elucidate 
intricate molecular connections, and prioritize the most 
pertinent biomarkers for diagnosis, prognosis, and thera-
peutic intervention. In the realm of AD, PD, and ALS, 
such instruments are crucial for elucidating the molecular 
heterogeneity and intersecting pathophysiology of these 

disorders [31]. Protein-protein interaction (PPI) net-
works, developed utilizing databases, such as STRING 
or BioGRID, can pinpoint critical regulatory nodes or 
subnetworks enriched in synaptic, inflammatory, or 
mitochondrial pathways throughout AD, PD, and ALS 
[37]. System-level techniques, including weighted gene 
co-expression network analysis (WGCNA), categorize 
proteins into modules according to associated expres-
sion patterns and associate them with clinical features 
or disease phases [37]. Simultaneously, ML techniques 
are progressively employed for biomarker identification 
and categorization. Advanced methodologies, including 
integrated multi-omics ML models (e.g. employing au-
toencoders or ensemble classifiers), have demonstrated 
potential in forecasting the progression from mild cogni-
tive impairment to AD, as well as in stratifying PD sub-
types based on proteomic profiles [37]. 

Proteomic databases: Resources, like PRIDE (Pro-
teomics Identifications Database), PeptideAtlas, and 
CPTAC provide repositories for both raw and processed 
proteomic data [38]. These enable meta-analyses and 
cross-validation of biomarker candidates.

Neuro-specific tools: Platforms, such as NeuroM-
MSig and Harmonizome amalgamate multi-omics data 
concentrated on neurological disorders, whereas Alz-
Data and Agora offer access to AD-specific molecular 
datasets, encompassing proteomics, transcriptomics, and 
genetic information [39].

Table 4. Summary of proteomic biomarkers by validation stage

Stage Biomarker Associated 
Disease(s)

Specimen 
Source

Validation 
Evidence Clinical Relevance

Clinical readiness NfL AD, PD, and ALS CSF and plasma
Validated in 
large multi-

center cohorts

Established indicator of 
neurodegeneration and 
disease advancement

Clinical readiness Phosphorylated tau (p-
tau181, and p-tau217) AD CSF and plasma Multiple longitu-

dinal studies
Diagnostic and prognostic 

value in AD

Validation phase α-synuclein (total/oligo-
meric) PD CSF and plasma Moderate co-

hort studies

Promising diagnostic bio-
marker; standardization 
of the assay is required

Validation phase TDP-43 ALS CSF and brain 
tissue

Limited cohort 
validation

Prospective diagnostic 
and pathogenic bio-

marker

Discovery phase Neurogranin and SNAP-25 AD and PD CSF and brain 
tissue

Exploratory pro-
teomic analyses

Indicate synaptic dys-
function; necessitate 
extensive validation

Discovery phase Complement proteins 
(C1q, C3, and C4) AD and ALS Plasma and CSF Small-sample 

studies

Neuroinflammation 
indicators; translational 

phase awaiting

Abbreviations: AD: Alzheimer’s disease; PD: Parkinson’s disease; ALS: Amyotrophic lateral sclerosis.
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Pathway and network analysis tools: Instruments, 
like Cytoscape, Database for Annotation, Visualization, 
and Integrated Discovery (DAVID), Gene Set Enrich-
ment Analysis (GSEA), and Ingenuity Pathway Analysis 
(IPA) facilitate the visualization and enrichment analysis 
of protein networks and pathways [40]. Platforms, such 
as iLINCS, OmicsNet, and NetworkAnalyst are exten-
sively utilized for the integration of genomic and tran-
scriptomic data [41]. 

ML and AI frameworks: Software libraries, like 
scikit-learn, TensorFlow, and AutoML frameworks fa-
cilitate ML applications in proteomics, encompassing 
feature selection and disease prediction [42]. Integrating 
proteomics within a systems biology paradigm enables 
researchers to progress from isolated protein indicators to 
comprehensive signatures that embody the dynamic and 
interrelated characteristics of neurodegeneration [36].

Clinical translation and diagnostic applications: 
The primary objective of proteomic biomarker discov-
ery in AD, PD, and ALS is to facilitate early and precise 
diagnosis while informing personalized treatment ap-
proaches (Figure 4). Although many potential biomark-
ers have been identified by high-throughput proteome 
analysis, their progression from laboratory to clinical use 
is a complicated, multi-phase process [43]. This process 
entails stringent validation, regulatory endorsement, and 
strategic incorporation into clinical practice, frequently 
as components of companion diagnostic systems. 

Validation and standardization of biomarkers: Prior 
to the application of a proteomic biomarker in clinical 
environments, it must complete a multi-phase validation 
(like analytical, clinical, and standardization) process to 
guarantee accuracy, repeatability, and clinical signifi-
cance [44]. 

Regulatory considerations and clinical trials: The 
regulatory framework for biomarker approval is over-
seen by authorities, such as the Food and Drug Admin-
istration (FDA) (United States), European Medicines 
Agency (EMA) (Europe), and Pharmaceuticals and 
Medical Devices Agency (PMDA) (Japan), each impos-
ing rigorous standards for diagnostic and prognostic in-
struments [45]. Proteomic biomarkers must exhibit clini-
cal value, signifying that they provide actionable insights 
that impact patient care or therapy choices.

Companion diagnostics and personalized thera-
py: The advancement of precision medicine in neu-
rology depends on the capacity to align patients with 
treatments according to their molecular profiles. Pro-

teomic biomarkers are pivotal to this initiative, serv-
ing as companion diagnostics that forecast therapy re-
sponse, track disease progression, and detect adverse 
effects (Figure 5). In AD, CSF and plasma levels of 
p-tau181, p-tau217, and Aβ42/40 ratios are increas-
ingly utilized to identify individuals with underlying 
amyloid pathology—those most likely to benefit from 
anti-amyloid medications, such as aducanumab or lec-
anemab [46]. These markers are set to become essen-
tial for commencing such treatments, thereby synchro-
nizing diagnostics with therapeutic decision-making.  
In PD, initiatives are under progress to establish bio-
markers that forecast responses to dopaminergic treat-
ments, or mitochondrial-targeted medicines [47]. 

Current research landscape on proteomic bio-
markers in AD, PD and ALS

Recent improvements in proteomics have resulted in 
substantial gains in the identification and characteriza-
tion of biomarkers linked to AD [21]. Research has 
progressed beyond traditional markers, like Aβ and tau 
to identify new candidates. A thorough proteome inves-
tigation combining Aβ and tau imaging with CSF pro-
teomics discovered 127 differentially abundant proteins 
throughout the AD spectrum, with glial-associated pro-
teins, such as SMOC1 and ITGAM identified as signifi-
cant predictors of Aβ pathology [48]. Simultaneously, 
analyses of blood-based proteomic biomarkers highlight 
the growing efficacy of plasma Aβ and phosphorylated 
tau as less invasive instruments for early identification. 
CSF-based research has identified five molecular sub-
types of AD: Hyperplasticity, innate immune activation, 
blood-brain barrier dysfunction, RNA dysregulation, 
and choroid plexus dysfunction, each associated with 
distinct genetic profiles, highlighting the complexity of 
AD pathogenesis [49]. 

Challenges and future perspectives

Technical and biological obstacles

Technical obstacles continue to pose a significant im-
pediment to the regular clinical application of proteomic 
biomarkers. High-throughput platforms, such as MS 
have exceptional sensitivity and specificity; yet, they 
are deficient in standardization for sample preparation, 
instrument calibration, and data analysis protocols. Inter-
laboratory variability and restricted repeatability hinder 
cross-study comparisons [50]. Biological problems arise 
from the intrinsic complexity and variability of neuro-
degenerative disorders. The proteomic profile may dif-
fer markedly based on disease stage, comorbidities, and 
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genetic predisposition [51]. Proteins of interest may un-
dergo degradation, modification, or masking, affecting 
their detection and interpretation. As biomarker testing 
becomes more accessible, ethical considerations are in-
creasingly salient. 

Progress in single-cell and spatial proteomics

Recent advancements in single-cell and spatial pro-
teomics are set to transform our comprehension of neu-
rodegeneration with unparalleled precision. Single-cell 
proteomics facilitates the quantification of protein ex-
pression in individual cells, circumventing the averaging 
effects inherent in bulk tissue analysis [52]. This is espe-
cially significant in neurodegenerative illnesses, because 
pathology is frequently unique to cell types and spatially 
confined. Single-cell investigations can reveal distinct 
protein signatures in neurones, astrocytes, microglia, 
and oligodendrocytes across different disease phases. 
Spatial proteomics holds significant potential for eluci-
dating disease propagation pathways and investigating 
neuroimmune interactions, including microglial re-
sponses next to degenerating neurons [52]. Collectively, 
these approaches will improve biomarker specificity and 
contextual significance, facilitating more precise disease 
modelling and therapeutic target validation. 

AI-assisted interpretation 

Artificial intelligence (AI) and ML algorithms will 
assume a progressively significant role in analyzing in-
tricate proteome datasets, discerning nuanced patterns, 
and forecasting specific disease trajectories [53]. None-
theless, meticulous consideration must be given to the 
transparency, reproducibility, and therapeutic applica-
tion of these models. Despite considerable obstacles, the 
domain of proteomic biomarker research in neurodegen-
erative illnesses is progressing swiftly. With technical 
enhancement, advanced biological comprehension, and 
ethical consideration, proteomics is poised to become 
fundamental to next-generation neurology—providing 
earlier detection, more precise diagnoses, and genuinely 
personalized treatment approaches for patients with AD, 
PD, ALS, and associated disorders [54]. This evaluation 
ranks proteomic biomarkers based on their validation 
status, offering a translational roadmap that connects 
discovery research with clinical use (Table 4). This para-
digm emphasizes the advancements made in developing 
reliable biomarkers like NfL and p-tau217, as well as the 
urgent necessity to propel emergent candidates through 
standardized validation processes.

Conclusion

This paper presents a comparative and translational 
proteomics paradigm for AD, PD, and ALS, emphasiz-
ing shared patterns of protein dysregulation and delin-
eating the practical obstacles in converting biomarker 
candidates into clinically reliable tools. This compre-
hensive viewpoint enhances our comprehension of neu-
rodegenerative pathomechanisms and offers a frame-
work for future initiatives to connect discovery with 
treatment implementation. Progress in high-resolution 
mass spectrometry, bioinformatics, and multi-omics 
integration has revealed numerous potential biomark-
ers in brain tissues, encompassing traditional markers, 
such as Aβ and tau in AD, as well as novel candidates 
in synaptic, inflammatory, and mitochondrial pathways 
in PD and ALS. The shift to stage-specific, longitudinal, 
and multi-biomarker profiles is essential for accurately 
reflecting the dynamic biology of neurodegeneration. 
Nonetheless, obstacles persist, encompassing techno-
logical unpredictability, biological intricacy, and ethical 
considerations surrounding early diagnosis. The advent 
of single-cell and spatial proteomics, alongside ML and 
systems biology methodologies, is expanding the limits 
of possibility, providing cell-type resolution, anatomi-
cal accuracy, and predictive capability. The successful 
clinical implementation of proteomic biomarkers will 
depend on rigorous validation, equitable accessibility, 
regulatory compliance, and incorporation into personal-
ized medicine frameworks. The collaboration between 
proteomics and novel therapeutic approaches offers the 
potential for early intervention and a change from reac-
tive care to proactive neuroprotection.
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